Условие задачи: Определить момент инерции J проволочного равностороннего треугольника со стороной а=10 см относительно: 1) оси, лежащей в плоскости треугольника и проходящей через его вершину параллельно стороне, противоположной этой вершине (рис. 3.10, а); 2) оси, совпадающей с одной из сторон треугольника (рис. 3.10, б). Масса m треугольника равна 12 г и равномерно распределена по длине проволоки.
Условие задачи: На концах тонкого однородного стержня длиной l и массой Зm прикреплены маленькие шарики массами m и 2m. Определить момент инерции J такой системы относительно оси, перпендикулярной стержню и проходящей через точку O, лежащую на оси стержня. Вычисления выполнить для случаев а, б, в, г, д, изображенных на рис. 3.11. При расчетах принять l=1 м, m=0,1 кг. Шарики рассматривать как материальные точки.
Внимание: ответ для пунктов б, в, г, д в задачниках 1988 и 2001 годов издания не правильный.
Условие задачи: Найти момент инерции J тонкого однородного кольца радиусом R=20 см и массой m=100 г относительно оси, лежащей в плоскости кольца и проходящей через его центр. 3.14. (объединены) Определить момент инерции J кольца массой m=50 г и радиусом R=10 см относительно оси, касательной к кольцу.
Условие задачи: Диаметр диска d=20 см, масса m=800 г. Определить момент инерции J диска относительно оси, проходящей через середину одного из радиусов перпендикулярно плоскости диска.
Условие задачи: В однородном диске массой m=1 кг и радиусом r=30 см вырезано круглое отверстие диаметром d=20 см, центр которого находится на расстоянии l=15 см от оси диска (рис. 3.12). Найти момент инерции J полученного тела относительно оси, проходящей перпендикулярно плоскости диска через его центр.
Условие задачи: Найти момент инерции J плоской однородной прямоугольной пластины массой m=800 г относительно оси, совпадающей с одной из ее сторон, если длина a другой стороны равна 40 см.
Условие задачи: Определить момент инерции J тонкой плоской пластины со сторонами a=10 см и b=20 см относительно оси, проходящей через центр масс пластины параллельно большей стороне. Масса пластины равномерно распределена по ее площади с поверхностной плотностью σ=1,2 кг/м2.
Условие задачи: Тонкий однородный стержень длиной l=1 м может свободно вращаться вокруг горизонтальной оси, проходящей через точку О на стержне (рис. 3.13). Стержень отклонили от вертикали на угол α и отпустили. Определить для начального момента времени угловое ε и тангенциальное aτ ускорения точки В на стержне. Вычисления произвести для следующих случаев: 1) a=0, b=2/3 l, α=π/2; 2) a=l/3, b=l, α=π/3; 3) a=l/4, b=l/2, α=2/3 π.
Условие задачи: Однородный диск радиусом R=10 см может свободно вращаться вокруг горизонтальной оси, перпендикулярной плоскости диска и проходящей через точку О на нем (рис. 3.14). Диск отклонили на угол α и отпустили. Определить для начального момента времени угловое ε и тангенциальное aτ ускорения точки В, находящейся на диске. Вычисления выполнить для следующих случаев: 1) a=R, b=R/2, α=π/2; 2) a=R/2, b=R, α=π/6; 3) a=2/3 R, b=2/3 R, α=2/3 π.
Условие задачи: Тонкий однородный стержень длиной l=50 см и массой m=400 г вращается с угловым ускорением ε=3 рад/с2 около оси, проходящей перпендикулярно стержню через его середину. Определить вращающий момент M.